
An approach to critical phenomena from one subsystem based on the CAM analysis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 3051

(http://iopscience.iop.org/0305-4470/23/13/039)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 3051-3060. Printed in the UK 

An approach to critical phenomena from one subsystem 
based on the CAM analysis 

Xiao Hu and Masuo Suzuki 
Department of Physics, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, 
Tokyo 113, Japan 

Received 30 October 1989 

Abstract. Two systematic series of multi-body effective field approximations are 
constructed and the CAM analyses are performed for the Ising model on the two- 
dimensional square lattice. In the first serics a two-body effective field is introduced 
in addition to the usual one-body one and a set of strips are used. The critical temper- 
ature and the critical index of the susceptibility are estimated as T: N 2.2697 J / k B  
and 7 ‘v 1.749. In the second series only a three-line strip is used and applied with in- 
creasing numbers of multi-body effective fields. The expected C A M  scaling behaviour 
has also been observed. It is very interesting conceptually that critical phenomena 
of an infinite system can be investigated by the multi-body effective field approxi- 
mation C A M  based on one subsystem. Practically using more multi-body effective 
fields instead of increasing degrees of freedom makes C P U  time fairly shorter. A new 
derivation of the C A M  scaling relation is also presented. 

1. Introduction 

To investigate critical phenomena in second-order phase transitions is one of the most 
important questions in statistical physics. Since a phase transition takes place usually 
in a system with an infinite number of degrees of freedom, an exact treatment of it 
is generally difficult. Thus we need some approximate approaches such as the renor- 
malisation group theory by Wilson [l] and the finite-size scaling approach by Fisher 
[2]. In Wilson’s RG approach we construct a renormalisation procedure, repeat it and 
investigate its properties such as the fixed point and the eigenvalue of the linear trans- 
formation in the limit. In Fisher’s approach we investigate a series of finite systems, 
study the systematic variance in the response functions for these finite systems and 
extract the asymptotic behaviour for the corresponding infinite system as the limit. 
One of the common features shared by these two theories is that more and more 
degrees of freedom have to be treated to extract the property for the corresponding 
infinite system. 

Recently one of the present authors (MS) has developed the so-called coherent- 
anomaly method (CAM) by generalising the well known mean-field approximation [4]. 
According to  this theory, true critical phenomena can be derived from a series of ef- 
fective field approximations. As is well known, in effective field approximations for a 
classical system the long-range order in a second-order phase transition is extracted by 
effective fields self-consistently determined and all cooperative effects to the relevant 
subsystem from the remainder can be represented by a complete set of multi-body 
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effective fields [ 5 ] .  It is clarified by the present aut,hors that  by choosing some ap- 
propriate subsystem the whole set of multi-body effective fields can be determined 
self-consistently, in principle, by means of the degrees of freedom within the subsys- 
tem [6]. In practice, on the other hand, for an infinite system with infinite cross section, 
the total number of multi-body effective fields becomes infinite and consequently one 
cannot determine them as a whole set. However, we can apply increasing numbers of 
multi-body effective fields on one subsystem to construct a series of classical approx- 
imations. The limit of this series of approximations gives the exact solution of the 
infinite system. Then according to the CAM theory with such series of approximations 
we can investigate the true critical phenomena of the relevant infinite system. Our 
parameter t o  specify individual approximation in the series for the CAM analysis is 
neither the size of the subsystem nor the range of effective fields. I t  is a softer and 
more intrinsic quantity, namely the degree of approximation achieved by each indi- 
vidual approximation as will be seen later. This treatment gives a new aspect of the 
CAM approach. 

In the present paper we apply the so-called even-odd parity effective field approx- 
imation CAM to  Ising ferromagnets on the square lattice to obtain the best numerical 
results of the CAM theory for the Ising model. Furthermore we perform a multi-body 
effective field approximation CAM in which the subsystem is fixed to  be a 3 x cm strip. 
A new derivation of the CAM scaling relation is also proposed. 

2. Multi-body effective field approximations and CAM analyses 

2.1.  A der i va t ion  of the C A M  scaling relation 

By applying multi-body effective fields on the boundary spins and requiring the cor- 
responding self-consistency conditions, we can formulate generalised multi-body effec- 
tive field approximations for the Ising ferromagnetic system. As larger subsystems 
are adopted, or as more multi-body effective fields are used, the results thus obtained, 
say the susceptibility and the critical point, become better. As a mat,ter of fact, the 
true behaviour of the infinite system should be recovered in the limit. namely when 
we treat the infinite system or determine the whole set of the multi-body effective 
fields [SI. 

It is the essential point of the CAM theory to recover the true critical behaviour 
from its classical approximations. One phenomenological derivation is given as follows: 
with any of multi-body effective field approximations we obtain a bifurcating point 
T, for the magnetisation m = (S)pB. The susceptibility to  a uniform external field 
diverges a t  the very temperature in the form 

near and above the approximate critical point T, with yo = 1. On the other hand the 
true critical behaviour is expected as 

x 
2: (T/T,' - l ) ~  

near and above the true critical point T: with y > 1. 
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Thus, one cannot count on a single effective field approximation to recover the true 
critical behaviour, as is well known. However it may be supposed that a n  approdma- 
tion does give the correct value of the true response function at  one point near the 
approximate critical point specified by 

The quantity X is a characteristic factor for the way to  construct the approximation. 
Then by adopting such a way to construct a series of approximations as keeping X 
constant and with an analytical continuation of the approximate critical point we can 
compose the true critical behaviour. This corresponds to the canonical construction 
[3] of series of approximations. Thus we may put 

to  find the following asymptotic behaviour which should be followed by the effective 
field critical coefficient X(T,): 

The above asymptote means that when we establish a systematic series of approx- 
imations for a critical phenomenon denoted by a critical index ( y )  different from its 
classical value (yo),  the effective field critical coefficients of the classical approdma- 
tions will unavoidably show anomalous behaviour as the degree of the approximation 
is increased. It is the CAM scaling relation. 

If the curves (1) and (2) have no cross point in the region T 1 T, 2 T: we can 
modify the above argument by supposing that the approximants at  temperatures T 
in (3) are proportional to the true asymptote. A proportional factor C(X) should be 
included in (4) and (5) .  In such a case, X is not unique and the series of approximations 
should be specified by the function C(X). The factor X is the scaling variable in the 
finite-degree-of-approximation scaling [3] and X = yO/(y - yo) corresponds to the 
envelope theory [3]. 

It is not difficult to see that for both of the two cases a common strategy to 
estimate the critical point and critical index can be given as follows. Firstly we 
construct a systematic series of classical approximations and skeletonise them near 
their critical point to derive classical asymptotes. Then we extract the systematic 
anomalous behaviour of the effective field critical coefficients and relate it to  the true 
critical index and critical point through (5). As we cannot determine the factor C(X), 
the true amplitude 2 cannot be estimated with the present approach. 

It appears that physically naive approximations based on self-consistency condi- 
tions belonging to  the same class (Weiss-like one, Bethe-like one [7], etc) and subsys- 
tems with the same geometry (cluster [3], strip [7], etc) share the common factor X 
(or C(X)) and thus compose the so-called canonical series [3]. By the phrase of ‘phys- 
ically naive’ we mean that one should introduce an anticipated stronger effective field 
(nearest-neighbour two-body one) rather than an anticipated weaker effective field 
(next nearest-neighbour two-body one). Of course, odd-body and even-body effective 
fields are considered separately. 
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2.2. Odd-even parity effective f i e l d  approximation C A M  

In the first systematic series, an  approximation is constructed by applying one-body 
effective field H ,  on the boundary single spins and two-body effective field H ,  on the  
boundary nearest-neighbour spin-pairs of an  infinitely long spin-strip. The  one-body 
effective fields cause a symmetry breaking and it is expected tha t  the self-consistency 
condition about the  spin correlation functions can bring efficiently the  critical point 
down to approach the true one. As a trick in our calculations we apply ghost fields 
G ,  and G ,  on the  central spins and put them to zero at the end. Then the  effective 
Hamiltonian for an  N-line strip with N being odd is 

The  self-consistency conditions are given by 

where for abbreviation we have used the superscripts ‘b’ and ‘c’ to denote the spins on 
the boundary lines and the central line, respectively. The  order parameters and spin 
correlation functions can be expressed by the derivatives of the maximum eigenvalue 
of the transfer matrix with respect to the effective fields as 

by using h ,  = P p B H 1 ,  g1 = PpBGlr h ,  = P H , ,  g2 = ?G2 and h = P P B H  and 
taking the first-order terms of the one-body effective field and ext’ernal field. All the  
derivatives are taken a t  h ,  = g 1  = h = g, = 0. Then the approximate critical point is 
determined by 

The  susceptibility of the one-body magnetisation to  the external field diverges at 
the critical point determined by (9) with an  effective field critical coefficient. X(T,) 
defined in (1) and explicitly given by 
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Figure 1. 
y = 7/4 and the extrapolation should give the true critical point T:. 

Table 1. Tc and ji(Tc) obtained by odd-even parity approximations based on three 
line, five-line and seven-line strips. For comparison we also list the results obtained 
by the so-called Bethe-like approximations [7]. 

Tc plotted against ji(T,) in such a way that perfect linearity means 

Odd-even Bline 2.4411 1.2704 
5-line 2.3984 1.5739 
7-line 2.3749 1.82% 

Bethe-like %line 2.5719 0.81954 
5-line 2.4852 1.0574 
7-line 2.4396 1.2654 

Practical calculations are performed with three-line, five-line and seven-line strips. 
The results are listed in table 1 and plotted in figure 1. 

It can be seen clearly that by applying even-body effective fields we have con- 
structed better approximations by using the same subsystems. As a matter of fact, 
the three-line odd-even parity approximation is nearly equivalent to  the seven-line 
Bethe-like approximation [7]. 

According to  the CAM theory we fit our data from odd-even parity approximations 
to the asymptotic formula 

X(T,) = A(T,/T; - 1)-'+'. 

The results thus obtained are that A N 0.1834, T,' N 2.2697J/kB and y N 1.749. They 
should be compared with the results obtained from the Bethe-like approximation CAM 
[7] T,' N 2.271 J/kB and y N 1.749 and the exact results T: = tanh-'( 4 2  - 1) J/kB N 
2.2692J/kB and y = 1.75. The estimate about the critical point is improved. The 
coincidence of the CAM results with the corresponding exact values is very good. 

2.9. Mul t i -body  e f fec t ive  f ie ld  a p p r o x i m a t i o n  C A M  

The second systematic series of approximations is constructed by fixing the subsystem 
to a three-line strip and applying increasing numbers of multi-body effective fields on 
its boundary. It can be shown that a three-line strip is necessary and enough, in 
principle, to  obtain exactly local properties, such as magnetisation and susceptibility, 
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of a two-dimensional uniform system [6]. With the CAM approach we can practically 
estimate the critical point and critical indices. Here in the present paper we investigate 
the critical phenomenon of the susceptibility above the critical point. 

Self-consistency conditions are given in the following way. The expectations of the 
boundary spin products applied with multi-body effective fields should be equal to  
the expectations of the corresponding central spin products. Then it is clear that  the 
number of self-consistency equations is always equal to the number of the multi-body 
effective fields and thus they can be determined without conflict. It has been shown 
by the present authors [6] that  the desired infinite system can be approached by such 
a set of approximations. 

As for the equation which determines the critical point, the LHS of the first equation 
in (9) becomes the determinant of a matrix whose components are given by the second- 
order derivatives of the maximum eigenvalue of the transfer matrix with respect t o  
the odd-body effective fields. We have also several additional equations similar to  the 
second equation in (9) for other even-body effective fields. This structure is important 
for optimising the way t o  apply multi-body effective fields to save CPU time as will be 
discussed in appendix 1. 

Numerical results are listed in table 2 and plotted i n  figures 2 and 3. As can be 
seen from table 2,  the effective field critical coefficients estimated with our approxi- 
mations look irregular a t  the first sight. However, arranging the data according to  the 
degrees of approximation as plotted in the figures changes the situation, namely the 
effective field critical coefficients show systematic behaviour according to  the degrees 
of approximation. This is the clearest evidence for the importance of the concept of 
the degree of approximation [3]. It also shows that the essence of the CAM approach 
[3] may not be understood from naive finite-size scaling. 

x 

t 

t 

2.3  2.5 2 .I 

Figure 2. n(Tc)  plotted against Tc. The anomalous behaviour appears clearly. The 
dashed line denotes the true critical point T: = tanh-'(J2 - 1)[ J l k ~ ]  where the 
critical coefficients are supposed to diverge. 

From the CAM analysis, namely by fitting the data  with (ll),  we obtain A N 

0.18 f 0.01, T,' N 2.26 f 0.02[ J/kB] and y N 1.78 0.04 where the errors denote two 
standard deviations. 

The important aspect of the present approach to  critical phenomena is that only 
one subsystem has been used in the investigation of the relevant infinite system. 
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Figure 3. Tc plotted against g(Tc)  as in figure 1. 

Table 2. Tc and a(Tc)  obtained by multi-body effective field approximations 
based on three-line strip. The data are presented in a sequence according to the 
numbers and the ranges of effective fields: 0: one-body EF; 1: one-body and 
nearest-neighbour two-body EF; 2: one-body and nearest-neighbour three-body EF; 
3: one-body, nearest-neighbour and next-nearest-neighbour two-body EF; 4: one- 
body, nearest-neighbour two-body and nearest-neighbour three-body EF; 5 :  one- 
body, nearest-neighbour, next-nearest-neighbour tw*body and nearest-neighbour 
three-body EF; 6: one-body, nearest-neighbour, next-nearest-neighbour and next  
next-nearest-neighbour t w*body EF; 7: one-body, nearest-neighbour, next-nearest 
neighbour, next-next-nearest-neighbour two-body and nearest-neighbour three-body 
EF; 8: one-body, nearest-neighbour, next-nearest-neighbour, next-next-nearest- 
neighbour two-body and nearest-neighbour four-body EF. 

2.57192 
2.44107 
2.55743 
2.38131 
2.45009 
2.39328 
2.36753 
2.38135 
2.36719 

0.819539 
1.27042 
0.862 109 
1.73598 
1.20344 
1.59508 
1.89689 
1.71168 
1.90843 

Namely study of the fluctuations coming from the degrees of freedom in a three- 
line strip (a quasi one-dimensional system) is enough to  understand the second-order 
phase transition in a two-dimensional system. The effects of the fluctuations coming 
from the other degrees of freedom can be represented by effective fields. It is not 
difficult to  see that  a three-line strip is the smallest subsystem to practice the present 
approach in the present two-dimensional system with nearest-neighbour interactions. 
Of course, more and more multi-body effective fields are used to  express more effects 
of the remainder. It should, however, be noted that these effective fields are deter- 
mined with the self-consistency conditions based on the degrees of freedom within the 
subsystem. Thus i t  is clearly different from other previous approaches [ l ,  21. 
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3. Summary and discussion 

We have presented a phenomenological derivation for the CAM scaling relation by 
adopting a hypothesis that  each classical approximation gives (or is proportional to) 
the correct value of the true asymptote a t  one temperature point and thus the true 
asymptote can be composed from a syst.ematic series of approximations. The factor 
X corresponds to the scaling factor in the finite-degree-of-approximation scaling [3]. 
I t  appears that  physically naive approximations based on self-consistency conditions 
belonging to  the same class (Weiss-like one, Bethe-like one [7], etc) and based on 
subsystems with the same geometry (cluster [3], strip [7], etc) share the common 
factor X (or C(X)) and thus compose the so-called canonical series [3]. 

We have constructed two systematic series of approximations. With the first one 
we have obtained the CAM estimates T: fl! 2.2697J/kB and 7 N 1.749, which should 
be compared with the exact results T,' = tanh-*(J2 - 1) J/k, 21 2.2692J/kB and 
7 = 1.75. In the second series we have applied more multi-body effective fields but 
restricted the subsystem to a three-line strip. With one subsystem we have been suc- 
cessful in obtaining the critical behaviour of the relevant infinite system. By practical 
calculation we have shown that study of the fluctuations coming from the degrees 
of freedom in a three-line strip (a  quasi one-dimensional syst,em) is enough t o  under- 
stand the second-order phase transition i n  a two-dimensional system. The effects of the 
fluctuations coming from the other degrees of freedom can be represented by effective 
fields. We have shown that  the essence of the CAM approach may not be understood 
from naive finite-size scaling. More detailed investigation of the relation between the 
finite-degree-of-approximation scaling and the finite-size scaling is expected. The re- 
lations among the present two CAM analyses, the Bethe-like CAM analysis [7] and the 
finite-size scaling approach can be shown schematically in figure 4. 

F S S  
O t  -- -- 

s12e 

Figure 4. Relations among several C A M  analyses and the finite-size scaling approach 
based on semi-infinite strip systems. The level of the approximation is denoted by 
the applied multi-body effective fields or the adopted self-consistency condit,ions and 
the size denotes the width of the strip used in each approximat.ion. LE CAM: Bet,he- 
like approximation C A M  [7]; OB CAM: even-odd parity effective field approximation 
C A M ;  M E  CAM: multi-body effective field approximation C A M ;  FSS: finite-size scaling 
approach. 

Practically and importantly, by applying more even-body effective fields to  con- 
struct approximations for the CAM analysis, we have reduced C P U  time. As a matter 
of fact, the C P U  time used in the eighth approximation listed in table 2 is one-quarter 
of that  of its equivalent seven-line odd-even approximation listed in table 1. It makes 
the CAM approach more useful in investigating new problems. 
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Appendix 1. Optimisation of the way to apply multi-body effective fields 

In practical application of the CAM approach we have to determine the approximate 
critical points and the effective field critical coefficients numerically. Thus, as shown 
in (9) and  (IO), derivatives of the maximum eigenvalue of transfer matrix with respect 
to multi-body effective fields should be evaluated in high accuracy. In practical cal- 
culations most of the C P ~ ;  time is spent to compute these derivatives. Then  the way 
to apply the  multi-body effective fields should be optimised. 

Firstly, the 
effects from odd-body effective fields are evaluated by second-order derivatives, which 
in turn,  as will be shown in appendix 2, is a sum of N 2  determinants of N x N 
matrices ( N  is the  dimension of the transfer matrix), while the  effects from even-body 
effective fields are brought in by first order deriva.tives and thus N deterrninanh are 
enough. Secondly, although even-body effective fields do not contribute in causing 
symmetry breaking, the self-consistency condition determining them bring efficiently 
the approximate critical point down to approach the true value and enable us  to attack 
the system near it.s true critical point. Thirdly, the number of derivatives involved 
in the simultaneous equations to  determine the critical point shows a square-power 
dependence on the number of odd-body effective fields and only a linear dependence 
on the number of the even-body effective fields. 

On the other hand while the number of simult.aneous equations does not change 
when the number of odd-body effective fields is increased, it increases linearly as 
more even-body effective fields are applied. Then, applying more even-body effective 
fields will increase the dimensionality of the solution space and thus makes more trials 
necessary and finally causes further calculation of derivatives. 

With these structures in mind we have optimised the method for applying multi- 
body effective fields. Furthermore in practical computations we have arranged the 
order of the  simultaneous equations so that.  according to the algorithm of the computer 
routine (Brend method), the times of trial of the equation involving the second-order 
derivatives has been reduced to the minimum. In this way we have reduced CPU time. 

Here we give three points in favour of even-body effective fields. 

Appendix 2. Derivatives of the niaximum eigenvalue of the transfer matrix 

To guarantee the  accuracy of numerical computation we have avoided taking numerical 
differences in the calculations of the first- and second-order derivatives. The  algorithm 
adopted is as follows. It. is easy to see that with ai denoting the coefficients of the 
secular equation of the transfer matrix we have, for example, 
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with 

and 

(A2.1) 

(A2.2) 

(A2.3) 

where T denotes the transfer matrix and E the unit matrix. The elements a(T),j/ag, 
can be given analytically and thus with accurate estimate of the maximum eigenvalue, 
the derivatives can be computed to high accuracy. Similarly we have 

(A2.4) 

Thus an nth order derivative can be evaluated by a sum of N" determinants of 
N x N matrices. 
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